# Math 221: LINEAR ALGEBRA

Chapter 4. Vector Geometry §4-4. Linear Operators on  $\mathbb{R}^3$ 

 $\begin{tabular}{ll} \textbf{Le Chen}^1 \\ \textbf{Emory University, 2021 Spring} \end{tabular}$ 

(last updated on 03/01/2021)



Rotations

Reflections

Multiple Actions

Summary

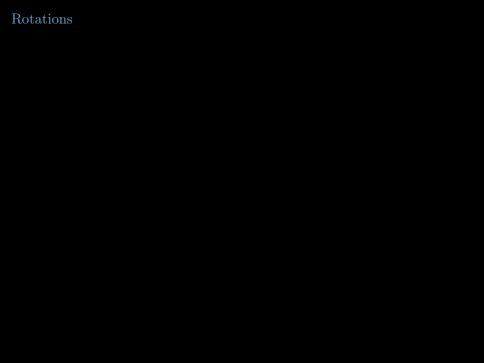
NOTE: Much of this chapter is what you would learn in Multivariable Calculus. You might find it interesting/useful to read. But I will only cover the material important to this course.

# Rotations

Reflections

Multiple Action

Summary



Rotations

## Definition

Let A be an  $m \times n$  matrix. The transformation  $T : \mathbb{R}^n \to \mathbb{R}^m$  defined by

$$T(\vec{x}) = A\vec{x} \text{ for each } \vec{x} \in \mathbb{R}^n$$

is called the matrix transformation induced by A.

# Definition (Rotations in $\mathbb{R}^2$ )

The transformation

$$R_{\theta}: \mathbb{R}^2 o \mathbb{R}^2$$

denotes counterclockwise rotation about the origin through an angle of  $\theta$ .

# Definition (Rotations in $\mathbb{R}^2$ )

The transformation

$$R_{\theta}: \mathbb{R}^2 o \mathbb{R}^2$$

denotes counterclockwise rotation about the origin through an angle of  $\theta$ .

Rotation through an angle of  $\theta$  preserves scalar multiplication.

# Definition (Rotations in $\mathbb{R}^2$ )

The transformation

$$R_{\theta}: \mathbb{R}^2 o \mathbb{R}^2$$

denotes counterclockwise rotation about the origin through an angle of  $\theta$ .

Rotation through an angle of  $\boldsymbol{\theta}$  preserves scalar multiplication.

Rotation through an angle of  $\boldsymbol{\theta}$  preserves vector addition.

Since  $R_{\theta}$  preserves addition and scalar multiplication,  $R_{\theta}$  is a linear transformation, and hence a matrix transformation.

The matrix that induces  $R_{\theta}$  can be found by computing  $R_{\theta}(E_1)$  and  $R_{\theta}(E_2)$ , where

$$E_1 = \left[ egin{array}{c} 1 \\ 0 \end{array} 
ight] \quad \mbox{and} \quad E_2 = \left[ egin{array}{c} 0 \\ 1 \end{array} 
ight].$$

Since  $R_\theta$  preserves addition and scalar multiplication,  $R_\theta$  is a linear transformation, and hence a matrix transformation.

The matrix that induces  $R_{\theta}$  can be found by computing  $R_{\theta}(E_1)$  and  $R_{\theta}(E_2)$ , where

$$E_1 = \left[ egin{array}{c} 1 \\ 0 \end{array} 
ight] \quad \mbox{ and } \quad E_2 = \left[ egin{array}{c} 0 \\ 1 \end{array} 
ight].$$

$$R_{\theta}(E_1)$$

Since  $R_\theta$  preserves addition and scalar multiplication,  $R_\theta$  is a linear transformation, and hence a matrix transformation.

The matrix that induces  $R_\theta$  can be found by computing  $R_\theta(E_1)$  and  $R_\theta(E_2)$  , where

$$E_1 = \left[ \begin{array}{c} 1 \\ 0 \end{array} \right] \quad \text{and} \quad E_2 = \left[ \begin{array}{c} 0 \\ 1 \end{array} \right].$$

$$R_{\theta}(E_1) = R_{\theta} \left[ \begin{array}{c} 1 \\ 0 \end{array} \right]$$

Since  $R_\theta$  preserves addition and scalar multiplication,  $R_\theta$  is a linear transformation, and hence a matrix transformation.

The matrix that induces  $R_{\theta}$  can be found by computing  $R_{\theta}(E_1)$  and  $R_{\theta}(E_2)$ , where

$$E_1 = \left[ egin{array}{c} 1 \\ 0 \end{array} 
ight] \quad ext{ and } \quad E_2 = \left[ egin{array}{c} 0 \\ 1 \end{array} 
ight].$$

$$R_{\theta}(E_1) = R_{\theta} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} \cos \theta \\ \sin \theta \end{bmatrix},$$

Since  $R_\theta$  preserves addition and scalar multiplication,  $R_\theta$  is a linear transformation, and hence a matrix transformation.

The matrix that induces  $R_{\theta}$  can be found by computing  $R_{\theta}(E_1)$  and  $R_{\theta}(E_2),$  where

$$E_1 = \left[ \begin{array}{c} 1 \\ 0 \end{array} \right] \quad \text{ and } \quad E_2 = \left[ \begin{array}{c} 0 \\ 1 \end{array} \right].$$

$$R_{\theta}(E_1) = R_{\theta} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} \cos \theta \\ \sin \theta \end{bmatrix},$$

and

$$\mathrm{R}_{ heta}(\mathrm{E}_2)$$

Since  $R_\theta$  preserves addition and scalar multiplication,  $R_\theta$  is a linear transformation, and hence a matrix transformation.

The matrix that induces  $R_{\theta}$  can be found by computing  $R_{\theta}(E_1)$  and  $R_{\theta}(E_2),$  where

$$\mathbf{E}_1 = \left[ egin{array}{c} 1 \\ 0 \end{array} 
ight] \quad ext{and} \quad \mathbf{E}_2 = \left[ egin{array}{c} 0 \\ 1 \end{array} 
ight].$$
  $\mathbf{R}_{ heta}(\mathbf{E}_1) = \mathbf{R}_{ heta} \left[ egin{array}{c} 1 \\ 0 \end{array} 
ight] = \left[ egin{array}{c} \cos heta \\ \sin heta \end{array} 
ight],$ 

and

$$\mathrm{R}_{ heta}(\mathrm{E}_2) = \mathrm{R}_{ heta} \left[ egin{array}{c} 0 \ 1 \end{array} 
ight]$$

Since  $R_\theta$  preserves addition and scalar multiplication,  $R_\theta$  is a linear transformation, and hence a matrix transformation.

The matrix that induces  $R_{\theta}$  can be found by computing  $R_{\theta}(E_1)$  and  $R_{\theta}(E_2),$  where

$$\mathrm{E}_1 = \left[ egin{array}{c} 1 \\ 0 \end{array} 
ight] \quad ext{and} \quad \mathrm{E}_2 = \left[ egin{array}{c} 0 \\ 1 \end{array} 
ight].$$

$$R_{\theta}(E_1) = R_{\theta} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} \cos \theta \\ \sin \theta \end{bmatrix},$$

and

$$\mathrm{R}_{ heta}(\mathrm{E}_2) = \mathrm{R}_{ heta} \left[ egin{array}{c} 0 \ 1 \end{array} 
ight] = \left[ egin{array}{c} -\sin heta \ \cos heta \end{array} 
ight]$$

The Matrix for  $R_{\theta}$ 

The rotation  $R_{\theta}:\mathbb{R}^2\to\mathbb{R}^2$  is a linear transformation, and is induced by the matrix

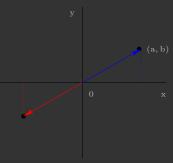
 $\begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}.$ 

We denote by

$$R_{\pi}: \mathbb{R}^2 \to \mathbb{R}^2$$

# We denote by

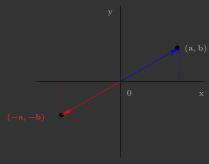
$$R_{\pi}: \mathbb{R}^2 \to \mathbb{R}^2$$



## We denote by

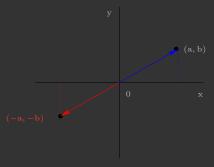
$$R_{\pi}: \mathbb{R}^2 \to \mathbb{R}^2$$

counterclockwise rotation about the origin through an angle of  $\boldsymbol{\pi}.$ 



We denote by

$$R_{\pi}: \mathbb{R}^2 \to \mathbb{R}^2$$

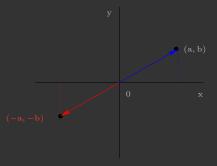


We see that 
$$\mathrm{R}_{\pi}\left[\begin{array}{c} a \\ b \end{array}\right] = \left[\begin{array}{c} -a \\ -b \end{array}\right] =$$

We denote by

$$R_{\pi}: \mathbb{R}^2 \to \mathbb{R}^2$$

counterclockwise rotation about the origin through an angle of  $\pi$ .



We see that  $R_\pi \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} -a \\ -b \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix}$ , so  $R_\pi$  is a matrix transformation.

### Problem

The transformation  $R_{\frac{\pi}{2}}:\mathbb{R}^2\to\mathbb{R}^2$  denotes a counterclockwise rotation about the origin through an angle of  $\frac{\pi}{2}$  radians. Find the matrix of  $R_{\frac{\pi}{2}}$ .

### Problem

The transformation  $R_{\frac{\pi}{2}}: \mathbb{R}^2 \to \mathbb{R}^2$  denotes a counterclockwise rotation about the origin through an angle of  $\frac{\pi}{2}$  radians. Find the matrix of  $R_{\frac{\pi}{2}}$ .

## Solution

First,

$$\begin{bmatrix} \frac{\pi}{2} & a \\ b \end{bmatrix} = \begin{bmatrix} -b \\ a \end{bmatrix}$$

## Problem

The transformation  $R_{\frac{\pi}{2}}: \mathbb{R}^2 \to \mathbb{R}^2$  denotes a counterclockwise rotation about the origin through an angle of  $\frac{\pi}{2}$  radians. Find the matrix of  $R_{\frac{\pi}{2}}$ .

## Solution

First,

$$R_{\frac{\pi}{2}} \left[ \begin{array}{c} a \\ b \end{array} \right] = \left[ \begin{array}{c} -b \\ a \end{array} \right]$$

Furthermore  $R_{\frac{\pi}{2}}$  is a matrix transformation, and the matrix it is induced by is

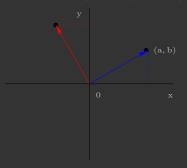
$$\begin{bmatrix} -b \\ a \end{bmatrix} = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix}.$$

We denote by

$$R_{\pi/2}: \mathbb{R}^2 \to \mathbb{R}^2$$

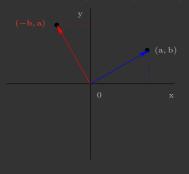
We denote by

$$R_{\pi/2}: \mathbb{R}^2 \to \mathbb{R}^2$$



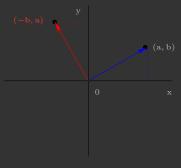
We denote by

$$R_{\pi/2}: \mathbb{R}^2 \to \mathbb{R}^2$$



We denote by

$$R_{\pi/2}: \mathbb{R}^2 \to \mathbb{R}^2$$

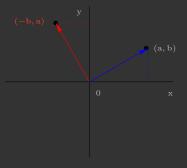


We see that 
$$R_{\pi/2} \left[ \begin{array}{c} a \\ b \end{array} \right] = \left[ \begin{array}{c} -b \\ a \end{array} \right] =$$

We denote by

$$R_{\pi/2}: \mathbb{R}^2 \to \mathbb{R}^2$$

counterclockwise rotation about the origin through an angle of  $\pi/2$ .



We see that  $R_{\pi/2} \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} -b \\ a \end{bmatrix} = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix}$ , so  $R_{\pi/2}$  is a matrix transformation.

Rotations

Reflections

Multiple Actions

Summary



# Reflections

# Example

In  $\mathbb{R}^2$ , reflection in the x-axis, which transforms  $\begin{bmatrix} a \\ b \end{bmatrix}$  to  $\begin{bmatrix} a \\ -b \end{bmatrix}$ , is a matrix transformation because

$$\left[\begin{array}{c} \mathbf{a} \\ -\mathbf{b} \end{array}\right] = \left[\begin{array}{cc} 1 & \mathbf{0} \\ \mathbf{0} & -1 \end{array}\right] \left[\begin{array}{c} \mathbf{a} \\ \mathbf{b} \end{array}\right].$$

# Reflections

# Example

In  $\mathbb{R}^2$ , reflection in the x-axis, which transforms  $\begin{bmatrix} a \\ b \end{bmatrix}$  to  $\begin{bmatrix} a \\ -b \end{bmatrix}$ , is a matrix transformation because

$$\left[\begin{array}{c} \mathbf{a} \\ -\mathbf{b} \end{array}\right] = \left[\begin{array}{cc} 1 & \mathbf{0} \\ \mathbf{0} & -1 \end{array}\right] \left[\begin{array}{c} \mathbf{a} \\ \mathbf{b} \end{array}\right].$$

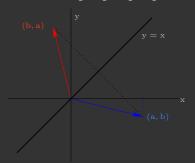
# Example

In  $\mathbb{R}^2$ , reflection in the y-axis transforms  $\begin{bmatrix} a \\ b \end{bmatrix}$  to  $\begin{bmatrix} -a \\ b \end{bmatrix}$ . This is a matrix transformation because

$$\left[\begin{array}{c} -\mathbf{a} \\ \mathbf{b} \end{array}\right] = \left[\begin{array}{cc} -1 & 0 \\ 0 & 1 \end{array}\right] \left[\begin{array}{c} \mathbf{a} \\ \mathbf{b} \end{array}\right].$$

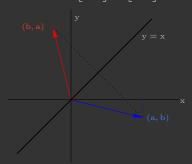
#### Example

Reflection in the line y=x transforms  $\left[\begin{array}{c} a\\ b\end{array}\right]$  to  $\left[\begin{array}{c} b\\ a\end{array}\right].$ 



#### Example

Reflection in the line y=x transforms  $\begin{bmatrix} a \\ b \end{bmatrix}$  to  $\begin{bmatrix} b \\ a \end{bmatrix}$ .

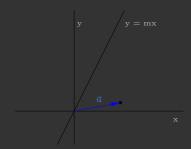


This is a matrix transformation because

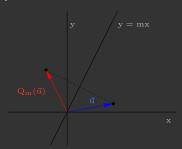
$$\left[\begin{array}{c} \mathbf{b} \\ \mathbf{a} \end{array}\right] = \left[\begin{array}{cc} \mathbf{0} & \mathbf{1} \\ \mathbf{1} & \mathbf{0} \end{array}\right] \left[\begin{array}{c} \mathbf{a} \\ \mathbf{b} \end{array}\right]$$

Let  $\mathrm{Q_m}:\mathbb{R}^2 \to \mathbb{R}^2$  denote reflection in the line y=mx, and let  $\vec{u} \in \mathbb{R}^2.$ 

Let  $Q_m:\mathbb{R}^2 \to \mathbb{R}^2$  denote reflection in the line y=mx, and let  $\vec{u} \in \mathbb{R}^2$ .



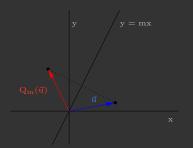
Let  $Q_m:\mathbb{R}^2 \to \mathbb{R}^2$  denote reflection in the line y=mx, and let  $\vec{u} \in \mathbb{R}^2$ .

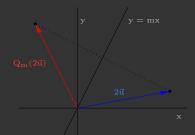


Let  $\mathrm{Q_m}:\mathbb{R}^2\to\mathbb{R}^2$  denote reflection in the line  $\mathrm{y}=\mathrm{mx},$  and let  $\vec{\mathrm{u}}\in\mathbb{R}^2.$ 

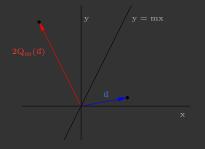


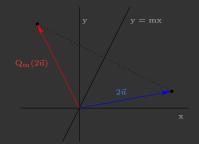
Let  $\mathrm{Q_m}:\mathbb{R}^2\to\mathbb{R}^2$  denote reflection in the line  $\mathrm{y}=\mathrm{mx},$  and let  $\vec{\mathrm{u}}\in\mathbb{R}^2.$ 





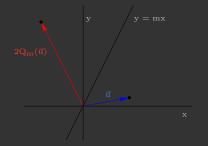
Let  $Q_m: \mathbb{R}^2 \to \mathbb{R}^2$  denote reflection in the line y=mx, and let  $\vec{u} \in \mathbb{R}^2$ .

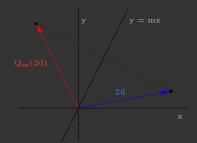




The figure indicates that  $Q_m(2\vec{u}) = 2Q_m(\vec{u}).$ 

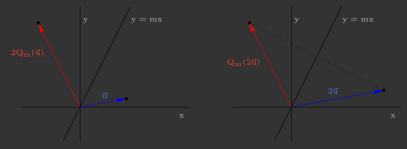
Let  $Q_m:\mathbb{R}^2 \to \mathbb{R}^2$  denote reflection in the line y=mx, and let  $\vec{u} \in \mathbb{R}^2$ .





The figure indicates that  $Q_m(2\vec{u})=2Q_m(\vec{u})$ . In general, for any scalar k,  $Q_m(k\vec{x})=kQ_m(\vec{x}),$ 

Let  $Q_m:\mathbb{R}^2 \to \mathbb{R}^2$  denote reflection in the line y=mx, and let  $\vec{u} \in \mathbb{R}^2$ .



The figure indicates that  $Q_m(2\vec{u})=2Q_m(\vec{u}). \;\;$  In general, for any scalar k,

$$Q_m(k\vec{x}) = kQ_m(\vec{x}),$$

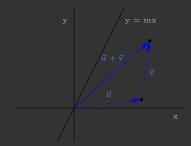
i.e.,  $\mathrm{Q}_{\mathrm{m}}$  preserves scalar multiplication.

# Example (Reflection in y = mx preserves vector addition)

Let  $\vec{\mathbf{u}}, \vec{\mathbf{v}} \in \mathbb{R}^2$ 

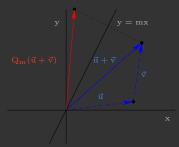
### Example (Reflection in y = mx preserves vector addition)

Let  $\vec{\mathrm{u}}, \vec{\mathrm{v}} \in \mathbb{R}^2$ 



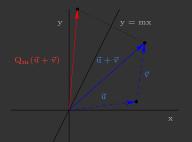
### Example (Reflection in y = mx preserves vector addition

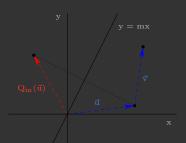
Let  $\vec{\mathrm{u}}, \vec{\mathrm{v}} \in \mathbb{R}^2$ 



### Example (Reflection in y = mx preserves vector addition)

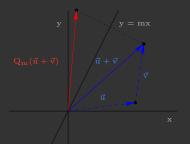
Let  $\vec{\mathbf{u}}, \vec{\mathbf{v}} \in \mathbb{R}^2$ .

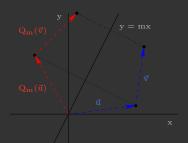




### Example (Reflection in y = mx preserves vector addition

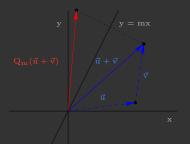
Let  $\vec{\mathbf{u}}, \vec{\mathbf{v}} \in \mathbb{R}^2$ .

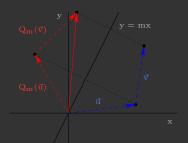




### Example (Reflection in y = mx preserves vector addition)

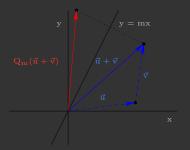
Let  $\vec{\mathbf{u}}, \vec{\mathbf{v}} \in \mathbb{R}^2$ .

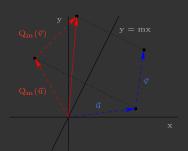




### Example (Reflection in y = mx preserves vector addition

Let  $\vec{u}, \vec{v} \in \mathbb{R}^2$ .



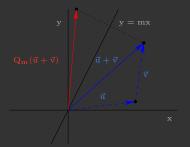


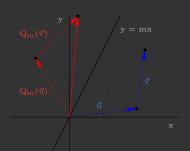
### The figure indicates that

$$Q_m(\vec{u}) + Q_m(\vec{v}) = Q_m(\vec{u} + \vec{v})$$

### Example (Reflection in y = mx preserves vector addition)

Let  $\vec{u}, \vec{v} \in \mathbb{R}^2$ .





### The figure indicates that

$$Q_m(\vec{u}) + Q_m(\vec{v}) = Q_m(\vec{u} + \vec{v})$$

i.e.,  $\mathrm{Q}_{\mathrm{m}}$  preserves vector addition.

 $Q_{\rm m}$  is a linear transformation

Since  $Q_m$  preserves addition and scalar multiplication,  $Q_m$  is a linear

transformation, and hence a matrix transformation.

Q<sub>m</sub> is a linear transformation

Since  $\mathrm{Q_m}$  preserves addition and scalar multiplication,  $\mathrm{Q_m}$  is a linear transformation, and hence a matrix transformation.

The matrix that induces  $Q_m$  can be found by computing  $Q_m(E_1)$  and  $Q_m(E_2),$  where

$$\mathrm{E}_1 = \left[ egin{array}{c} 1 \\ 0 \end{array} 
ight] \quad ext{and} \quad \mathrm{E}_2 = \left[ egin{array}{c} 0 \\ 1 \end{array} 
ight].$$



$$\cos heta = rac{1}{\sqrt{1+\mathrm{m}^2}} \quad ext{and} \quad \sin heta = rac{\mathrm{m}}{\sqrt{1+\mathrm{m}^2}}$$



$$\cos \theta = rac{1}{\sqrt{1+m^2}}$$
 and  $\sin \theta = rac{m}{\sqrt{1+m^2}}$ 



$$\cos heta = rac{1}{\sqrt{1+\mathrm{m}^2}}$$
 and  $\sin heta = rac{\mathrm{m}}{\sqrt{1+\mathrm{m}^2}}$ 



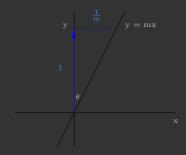
$$\cos\theta = \frac{1}{\sqrt{1+m^2}} \quad \text{and} \quad \sin\theta = \frac{m}{\sqrt{1+m^2}}$$
 
$$Q_m(E_1) = \left[\begin{array}{c} \cos(2\theta) \\ \sin(2\theta) \end{array}\right]$$



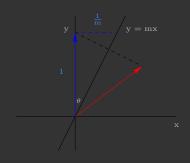
$$\cos\theta = \frac{1}{\sqrt{1+m^2}} \quad \text{and} \quad \sin\theta = \frac{m}{\sqrt{1+m^2}}$$
 
$$Q_m(E_1) = \left[\begin{array}{c} \cos(2\theta) \\ \sin(2\theta) \end{array}\right] = \left[\begin{array}{c} \cos^2\theta - \sin^2\theta \\ 2\sin\theta\cos\theta \end{array}\right]$$



$$\begin{split} \cos\theta &= \frac{1}{\sqrt{1+m^2}} \quad \text{and} \quad \sin\theta = \frac{m}{\sqrt{1+m^2}} \\ Q_m(E_1) &= \left[ \begin{array}{c} \cos(2\theta) \\ \sin(2\theta) \end{array} \right] = \left[ \begin{array}{c} \cos^2\theta - \sin^2\theta \\ 2\sin\theta\cos\theta \end{array} \right] = \frac{1}{1+m^2} \left[ \begin{array}{c} 1-m^2 \\ 2m \end{array} \right] \end{split}$$



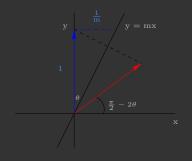
$$\cos heta = rac{}{\sqrt{1+\mathrm{m}^2}}$$
 and  $\sin heta = rac{}{\sqrt{1+\mathrm{m}}}$ 



$$\cos heta = rac{\sin heta}{\sqrt{1+\mathrm{m}^2}}$$
 and  $\sin heta = rac{1}{\sqrt{1+\mathrm{m}^2}}$ 

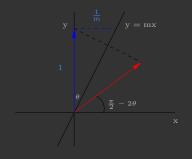


$$\cos heta = rac{1}{\sqrt{1+\mathrm{m}^2}}$$
 and  $\sin heta = rac{1}{\sqrt{1+\mathrm{m}^2}}$ 



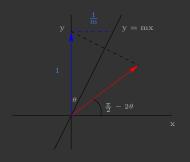
$$\cos \theta = \frac{m}{\sqrt{1+m^2}}$$
 and  $\sin \theta = \frac{1}{\sqrt{1+m^2}}$ 

$$Q_m(E_2) = \begin{bmatrix} \cos(\frac{\pi}{2} - 2\theta) \\ \sin(\frac{\pi}{2} - 2\theta) \end{bmatrix}$$



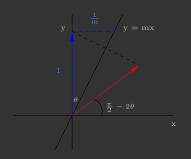
$$\cos \theta = \frac{m}{\sqrt{1+m^2}}$$
 and  $\sin \theta = \frac{1}{\sqrt{1+m^2}}$ 

$$Q_{m}(E_{2}) = \begin{bmatrix} \cos(\frac{\pi}{2} - 2\theta) \\ \sin(\frac{\pi}{2} - 2\theta) \end{bmatrix} = \begin{bmatrix} \cos\frac{\pi}{2}\cos(2\theta) + \sin\frac{\pi}{2}\sin(2\theta) \\ \sin\frac{\pi}{2}\cos(2\theta) - \cos\frac{\pi}{2}\sin(2\theta) \end{bmatrix}$$



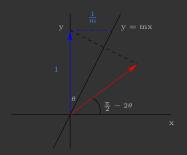
$$\cos \theta = \frac{m}{\sqrt{1+m^2}}$$
 and  $\sin \theta = \frac{1}{\sqrt{1+m^2}}$ 

$$\begin{array}{lcl} Q_m(E_2) & = & \left[\begin{array}{cc} \cos(\frac{\pi}{2} - 2\theta) \\ \sin(\frac{\pi}{2} - 2\theta) \end{array}\right] = \left[\begin{array}{cc} \cos\frac{\pi}{2}\cos(2\theta) + \sin\frac{\pi}{2}\sin(2\theta) \\ \sin\frac{\pi}{2}\cos(2\theta) - \cos\frac{\pi}{2}\sin(2\theta) \end{array}\right] \\ & = & \left[\begin{array}{cc} \sin(2\theta) \\ \cos(2\theta) \end{array}\right] \end{array}$$



$$\cos \theta = \frac{m}{\sqrt{1+m^2}}$$
 and  $\sin \theta = \frac{1}{\sqrt{1+m^2}}$ 

$$\begin{array}{lcl} Q_m(E_2) & = & \left[ \begin{array}{cc} \cos(\frac{\pi}{2} - 2\theta) \\ \sin(\frac{\pi}{2} - 2\theta) \end{array} \right] = \left[ \begin{array}{cc} \cos\frac{\pi}{2}\cos(2\theta) + \sin\frac{\pi}{2}\sin(2\theta) \\ \sin\frac{\pi}{2}\cos(2\theta) - \cos\frac{\pi}{2}\sin(2\theta) \end{array} \right] \\ & = & \left[ \begin{array}{cc} \sin(2\theta) \\ \cos(2\theta) \end{array} \right] = \left[ \begin{array}{cc} 2\sin\theta\cos\theta \\ \cos^2\theta - \sin^2\theta \end{array} \right] \end{array}$$



$$\cos \theta = \frac{m}{\sqrt{1+m^2}}$$
 and  $\sin \theta = \frac{1}{\sqrt{1+m^2}}$ 

$$\begin{array}{lll} Q_m(E_2) & = & \left[ \begin{array}{cc} \cos(\frac{\pi}{2} - 2\theta) \\ \sin(\frac{\pi}{2} - 2\theta) \end{array} \right] = \left[ \begin{array}{cc} \cos\frac{\pi}{2}\cos(2\theta) + \sin\frac{\pi}{2}\sin(2\theta) \\ \sin\frac{\pi}{2}\cos(2\theta) - \cos\frac{\pi}{2}\sin(2\theta) \end{array} \right] \\ & = & \left[ \begin{array}{cc} \sin(2\theta) \\ \cos(2\theta) \end{array} \right] = \left[ \begin{array}{cc} 2\sin\theta\cos\theta \\ \cos^2\theta - \sin^2\theta \end{array} \right] = \frac{1}{1+m^2} \left[ \begin{array}{cc} 2m \\ m^2 - 1 \end{array} \right] \end{array}$$

The Matrix for Reflection in y = mx

| The transformation $Q_m: \mathbb{R}^2 \to \mathbb{R}^2$ , reflection in the line $y = mx$ , is a linear |  |
|---------------------------------------------------------------------------------------------------------|--|
| transformation and is induced by the matrix                                                             |  |
|                                                                                                         |  |

| transformation and is indu |   | by the matrix |    |   |  |
|----------------------------|---|---------------|----|---|--|
|                            | 1 | $[1-m^2]$     | 2m | 1 |  |

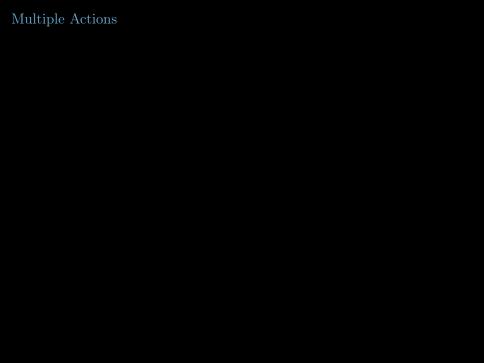
 $\overline{1+\mathrm{m}^2}$ 

Rotations

Reflections

Multiple Actions

Summary



# Multiple Actions

#### Problem

Find the rotation or reflection that equals reflection in the x-axis followed by rotation through an angle of  $\frac{\pi}{2}$ .

# Multiple Actions

#### Problem

Find the rotation or reflection that equals reflection in the x-axis followed by rotation through an angle of  $\frac{\pi}{2}$ .

### Solution

Let  $Q_0$  denote the reflection in the x-axis, and  $R_{\frac{\pi}{2}}$  denote the rotation through an angle of  $\frac{\pi}{2}$ . We want to find the matrix for the transformation  $R_{\frac{\pi}{2}} \circ Q_0$ .

$$Q_0$$
 is induced by  $A = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$ , and  $R_{\frac{\pi}{2}}$  is induced by

$$\mathbf{B} = \begin{bmatrix} \cos\frac{\pi}{2} & -\sin\frac{\pi}{2} \\ \sin\frac{\pi}{2} & \cos\frac{\pi}{2} \end{bmatrix} = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$$

### Solution

Hence  $R_{\frac{\pi}{2}} \circ Q_0$  is induced by

$$\mathrm{BA} = \left[ \begin{array}{cc} 0 & -1 \\ 1 & 0 \end{array} \right] \left[ \begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array} \right] = \left[ \begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array} \right].$$

### Solution

Hence  $R_{\frac{\pi}{2}} \circ Q_0$  is induced by

$$\mathrm{BA} = \left[ \begin{array}{cc} 0 & -1 \\ 1 & 0 \end{array} \right] \left[ \begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array} \right] = \left[ \begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array} \right].$$

Notice that  $BA = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$  is a reflection matrix.

### Solution

Hence  $R_{\frac{\pi}{2}} \circ Q_0$  is induced by

$$BA = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}.$$

Notice that  $BA = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$  is a reflection matrix.

How do we know this?

Compare BA to

$$Q_m = \frac{1}{1+m^2} \left[ \begin{array}{cc} 1-m^2 & 2m \\ 2m & m^2-1 \end{array} \right]$$

Compare BA to

$$Q_{m} = rac{1}{1+m^{2}} \left[ egin{array}{cc} 1-m^{2} & 2m \ 2m & m^{2}-1 \end{array} 
ight]$$

Now, since  $1 - m^2 = 0$ , we know that m = 1 or m = -1. But  $\frac{2m}{1+m^2} = 1 > 0$ , so m > 0, implying m = 1.

Compare BA to

$$Q_{m} = \frac{1}{1+m^{2}} \left[ \begin{array}{cc} 1-m^{2} & 2m \\ 2m & m^{2}-1 \end{array} \right]$$

Now, since  $1-m^2=0$ , we know that m=1 or m=-1. But  $\frac{2m}{1+m^2}=1>0$ , so m>0, implying m=1.

Therefore,

$$R_{\frac{\pi}{2}} \circ Q_0 = Q_1,$$

reflection in the line y = x.

Find the rotation or reflection that equals reflection in the line y = -x followed by reflection in the y-axis.

Find the rotation or reflection that equals reflection in the line y=-x followed by reflection in the y-axis.

#### Solution

We must find the matrix for the transformation  $Q_Y \circ Q_{-1}$ .

Find the rotation or reflection that equals reflection in the line y = -x followed by reflection in the v-axis.

#### Solution

We must find the matrix for the transformation  $Q_Y \circ Q_{-1}$ .

 $Q_{-1}$  is induced by

$$A = \frac{1}{2} \begin{bmatrix} 0 & -2 \\ -2 & 0 \end{bmatrix} = \begin{bmatrix} 0 & -1 \\ -1 & 0 \end{bmatrix},$$

and Q<sub>Y</sub> is induced by

$$B = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}$$

Find the rotation or reflection that equals reflection in the line y = -x followed by reflection in the v-axis.

#### Solution

We must find the matrix for the transformation  $Q_Y \circ Q_{-1}$ .

 $Q_{-1}$  is induced by

$$A = \frac{1}{2} \begin{bmatrix} 0 & -2 \\ -2 & 0 \end{bmatrix} = \begin{bmatrix} 0 & -1 \\ -1 & 0 \end{bmatrix},$$

and Q<sub>Y</sub> is induced by

$$B = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}$$

Therefore,  $Q_Y \circ Q_{-1}$  is induced by BA.

$$\mathrm{BA} = \left[ \begin{array}{cc} -1 & 0 \\ 0 & 1 \end{array} \right] \left[ \begin{array}{cc} 0 & -1 \\ -1 & 0 \end{array} \right] = \left[ \begin{array}{cc} 0 & 1 \\ -1 & 0 \end{array} \right].$$

$$BA = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & -1 \\ -1 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}.$$

What transformation does BA induce?

$$BA = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & -1 \\ -1 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}.$$

## What transformation does BA induce?

Rotation through an angle  $\theta$  such that

$$\cos \theta = 0$$
 and  $\sin \theta = -1$ .

$$BA = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & -1 \\ -1 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}.$$

## What transformation does BA induce?

Rotation through an angle  $\theta$  such that

$$\cos \theta = 0$$
 and  $\sin \theta = -1$ .

Therefore, 
$$Q_Y \circ Q_{-1} = R_{-\frac{\pi}{2}} = R_{\frac{3\pi}{2}}$$
.

Rotations

Reflection:

Multiple Actions

Summary



 ${\rm In \ general},$ 

 $\,\blacktriangleright\,$  The composite of two rotations is a

In general,

▶ The composite of two rotations is a rotation

$$R_{\theta} \circ R_{\eta} = R_{\theta + \eta}.$$

In general,

▶ The composite of two rotations is a rotation

$$R_{\theta} \circ R_{\eta} = R_{\theta+\eta}.$$

 $\,\blacktriangleright\,$  The composite of two reflections is a

In general,

► The composite of two rotations is a rotation

$$R_{\theta} \circ R_{\eta} = R_{\theta+\eta}.$$

▶ The composite of two reflections is a rotation.

$$Q_m \circ Q_n = R_\theta$$

where  $\theta$  is  $2\times$  the angle between lines y = mx and y = nx.

In general,

► The composite of two rotations is a rotation

$$R_{\theta} \circ R_{\eta} = R_{\theta+\eta}.$$

▶ The composite of two reflections is a rotation.

$$Q_m \circ Q_n = R_\theta$$

where  $\theta$  is  $2\times$  the angle between lines y = mx and y = nx.

▶ The composite of a reflection and a rotation is a

In general,

► The composite of two rotations is a rotation

$$R_{\theta} \circ R_{\eta} = R_{\theta+\eta}.$$

► The composite of two reflections is a rotation.

$$Q_m \circ Q_n = R_\theta$$

where  $\theta$  is  $2\times$  the angle between lines y = mx and y = nx.

▶ The composite of a reflection and a rotation is a reflection.

$$R_{\theta} \circ Q_n = Q_m \circ Q_n \circ Q_n = Q_m$$